Emergence of sparse coding via dendritic computation in a population of
canonical visual binary neurons
Ulises Rodriguez-Dominguez and Hideaki Shimazaki
Graduate School of Informatics, Kyoto University, Kyoto, Japan

Abstract

Spike-count histograms of the activity in a population of neurons, e.g. at the visual cortex or hippocampus,
exhibit a sparse profile with most of the neurons silent while highly synchronous states have considerably lower
probability. The sparse coding, a scheme framed in the Bayesian brain hypothesis, represents natural stimuli
by neurons under such conditions. The generative models of sparse coding of natural stimuli explained various
features of early sensory systems, e.g., Gabor-like receptive fields of monkey or cat V1 neurons. However, these
generative models typically are not neurally grounded, e.g., potentially assuming continuous-valued and negative
neural activity rates. Here we propose a non-negative, spiking generative model grounded on a canonical circuit
of pyramidal visual cortex binary neurons. The circuit captures the distribution of either the spontaneous
(prior) or evoked (posterior) neural activity, where the spontaneous activity distribution exhibits silent neurons
(sparse population), active neurons (hyper-active population) or a bimodal combination of both cases, where
the former is characterized by alternating shrinking higher-order interactions between the neurons. This is
regulated by the balance between dendritic nonlinearities at the proximal regions of a neuron which receive
excitatory inputs, and distal inhibitions from interneurons, known to process predictive information. Compared
to the non-sparse population, we demonstrate that, under the sparse population regime, the model captures
Gabor-like spatial primitives as basis functions, improving the goodness-of-fit to the observed natural image
patches. These results promise the construction of more complex spike-based generative models, which will
allow us to test the Bayesian brain hypothesis by measuring directly from sensory cortices.

1 Objective

We aim to elucidate how a sparse distribution profile emerges from interacting binary neurons and specific
neural mechanisms while also explaining sparse coding under the Bayesian brain hypothesis, which balances
simplicity and interpretability.

2 Methods

We build a generative model of a population of binary visual cortical neurons guided by a canonical circuit
found in pyramidal cortical neurons. The model for an image patch y € R? and a hidden state x € {0, 1}N is

P (x,y10) =P (ylx, ¢) P (x|w) (1)
where P (x|w) is the probability mass function for the spontaneous activity (or prior), P (y|x, ¢) is the observa-
tion (or likelihood) Gaussian model and 8 = {¢, w} the parameters. The Gaussian likelihood mean ®x predicts
the stimuli, with ® an over-complete vector space. We introduce the binary prior
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where Z is its partition function, g7 (x; J2i Q) at proximal dendrites considers the pairwise interactions with
their relevance weighted by 12, while higher order interactions (HOIs) also at proximal dendrites are captured
by the sigmoidal term g©’~ (X; whne ) Such nonlinearity underlies alternating shrinking HOIs, required for non-
independent sparse distributions [1]. Distal inhibitory input received at apical branches from either SOM or PV
interneurons processing predictive information [2, 3] is captured by the term g’ (x; wl, <I>). The base measure

N
function h (Z filxl) =1 / < 5 N ) is required for a widespread distribution to emerge for priors with

i=1Ti
homogeneous probability of &k active neurons (see [1]), and our prior only partially departs from homogeneity.
This term remains plausible as an excitatory dendritic log-transformation of laterally projected neural activity

(see [4]).

3 Results

We learned the basis functions ® employing Gibbs sampling and neurally plausible gradient ascent updates
under the Expectation-Maximization framework using 10,000 12x12 image patches from natural stimuli (see
Figure 1). The average marginal likelihood, which measures the goodness-of-fit, improves if the strength of the
distal inhibition is sufficient (Table 1), which corresponds to the sparse population regime.
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Figure 1: Left: prior distribution of spontaneous population activity (binary spike counts). Right: learned basis

functions @ (synaptic weights).

Table 1: Average marginal likelihood (ML) across different conditions (60 per each value for the distal inhibition
a1

weights) on test natural image patches after learning. Results should be multiplied by (\/ 2mo? ) with d = 144

the dimension of the vectorized image patches and o = 0.75 the standard deviation used for the likelihood.

‘ Avg. strength of distal inhibition ‘ Avg. ML (unnormalized) ‘

1.15 0.0926 (0.0160)
2.25 0.1375 (0.1534)
4.45 0.2378 (0.1253)
8.85 0.3078 (0.1054)
17.65 0.3706 (0.0936)

4 Conclusions

Under the restrictions imposed by the canonical cortical circuit and the biologically plausible dendritic nonlin-
earities, we found that the sparse distribution profile emerges only if the the balance between the nonlinearities
is such that the alternating-shrinking HOIs induced by the sigmoidal proximal nonlinearities dominate. We
also found that the evidence (marginal likelihood of data) is improved for the sparse regime, especially when
compared to the case when distal inhibitions are insufficient. To the best of our knowledge, we, for the first time,
explained emergence of sparse coding using binary neurons by introducing dendritic nonlinear computation to
model sparse population activity characterized by their alternating shrinking higher-order interactions.
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